Perhentidines A-C: Macroline-Macroline Bisindoles from Alstonia and the Absolute Configuration of Perhentinine and Macralstonine

Siew-Huah Lem, ${ }^{\dagger}$ Yun-Yee Low, ${ }^{\dagger}$ Shin-Jowl Tan, ${ }^{\dagger}$ Kuan-Hon Lime, ${ }^{\dagger}$ Noel F. Thomas, ${ }^{\dagger}$ and Toh-Seok Kame** ${ }^{\dagger}$
${ }^{\dagger}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
${ }^{\dagger}$ School of Pharmacy, University of Nottingham Malaysia Campus, Jalan Broca, 43500 Semenyih, Selangor, Malaysia

(S) Supporting Information

Abstract

Three new bisindole alkaloids of the macro-line-macroline type, perhentidines $\mathrm{A}-\mathrm{C}(1-3)$, were isolated from the stem-bark extract of Alstonia macrophylla and Alstonia angustifolia. The structures of these alkaloids were established on the basis of NMR and MS analyses. The absolute configurations of perhentinine (4) and macralstonine (5) were stab- lished by X-ray diffraction analyses, which facilitated assignment of the configuration at $\mathrm{C}-20$ in the regioisomeric bisindole alkaloids perhentidines $\mathrm{A}-\mathrm{C}(1-3)$. A potentially useful method for the determination of the configuration at C-20 based on comparison of the NMR chemical shifts of the bisindoles and their acetate derivatives, in these and related bisindoles with similar constitution and branching of the monomeric units, is also presented.

The genus Alstonia (Apocynaceae), which is widely distributed in Southeast Asia, ${ }^{1-3}$ is rich in alkaloids. ${ }^{4-24}$ We previously reported the structure of perhentinine (4), a bisindole alkaloid constituted from the union of two macroline moieties from Alstonia macrophylla. ${ }^{14}$ The structure was elucidated on the basis of the analysis of the NMR and MS data, which were however insufficient to assign the configuration at C-20. In continuation of our ongoing studies of Malaysian Alstonia species, ${ }^{12-21}$ we have isolated three additional bisindole alkaloids related to perhentinine from two Malayan Alstonia species, perhentidines A (1) and B (2) from A. macrophylla Wall and perhentidines A (1) and C (3) from A. angustifolia Wall.

Perhentidine A (1) was obtained as a light yellowish oil with $[\alpha]^{25}{ }_{\mathrm{D}}-77\left(c 0.40, \mathrm{CHCl}_{3}\right)$. The IR spectrum showed bands at $3400,1702,1648$, and $1617 \mathrm{~cm}^{-1}$, due to the presence of OH , ketocarbonyl, and an α, β-unsaturated carbonyl group, respectively, while the UV spectrum showed absorption maxima at 231 and 286 nm , consistent with the presence of indole chromophores. The ESIMS of $\mathbf{1}$ showed a pseudomolecular ion $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 705$, which analyzed for $\mathrm{C}_{43} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{5}+\mathrm{H}$. The ${ }^{13} \mathrm{C}$ NMR spectrum (Table 1) showed a total of 43 resonances, comprising seven methyl, seven methylene, 16 methine, and 13 quaternary carbon atoms, in agreement with the molecular formula. The quaternary carbon resonance at δ_{C} 212.9 is consistent with the presence of a ketocarbonyl, while the other quaternary carbon resonance at $\delta_{\mathrm{C}} 195.2$ and the associated olefinic carbon signals at $\delta_{\mathrm{C}} 121.0$ and 157.2, are consistent with the presence of an α, β-unsaturated carbonyl group. The unusual deshielding of the β-carbon at $\delta_{\mathrm{C}} 157.2$ indicated oxygen substitution. In addition, two oxymethylene carbons were observed at $\delta_{\mathrm{C}} 66.8$ and 67.6 , the former due to a
hydroxymethyl group, as shown by acetylation, which yielded an O-acetyl derivative (ia).

The ${ }^{1} \mathrm{H}$ NMR data (Table 2) showed the presence of four aromatic hydrogen ($\delta_{\mathrm{H}} 7.16-7.56$) associated with an unsubstituted indole moiety, a pair of AB doublets at $\delta_{\mathrm{H}} 6.75$ and 7.22 associated with another indole moiety substituted at positions 11^{\prime} and 12^{\prime}, a vinylic singlet at $\delta_{\mathrm{H}} 7.49$ associated with a trisubstituted double bond, and a total of seven methyl singlets, corresponding to two $\mathrm{N} 1-\mathrm{Me}\left(\delta_{\mathrm{H}} 3.58,3.69\right)$, two N4Me ($\delta_{\mathrm{H}} 2.36,2.37$), two acetyl methyl ($\delta_{\mathrm{H}} 1.55,2.06$), and an aromatic methoxy substituent ($\delta_{\mathrm{H}} 3.83,11^{\prime}$-OM). Since only six aromatic hydrogen were observed and both indolic nitrogens are substituted, it is reasonable to conclude that the bisindole is branched from one of the aromatic carbon atoms of one monomer, with the adjacent position occupied by the methoxy substituent. The aromatic doublet at $\delta_{\mathrm{H}} 7.22$ was assigned to H-9' from its NOE with H-6', while the placement of the methoxy substituent at $\mathrm{C}-11^{\prime}$ was confirmed by the observed NOE between $\mathrm{H}-10^{\prime}\left(\delta_{\mathrm{H}} 6.75\right)$ and $11^{\prime}-\mathrm{OMe}\left(\delta_{\mathrm{H}} 3.83\right)$. These assignments were further supported by the observed three-bond correlations from $\mathrm{H}-9^{\prime}$ to $\mathrm{C}-7{ }^{\prime}$ and $\mathrm{C}-13^{\prime}$ and from $\mathrm{H}-9^{\prime}$ and 11^{\prime}-OM to $\mathrm{C}-11^{\prime}$ in the HMBC spectrum (Figure 1). These observations indicated C-12' as the site of branching of the bisindole from this monomeric unit.

The remaining part of this macroline half was assembled via the 2-D NMR data. The COSY spectrum revealed an $\mathrm{NCHCH}_{2} \mathrm{CHCHCH}_{2} \mathrm{O}$ fragment, which corresponds to the $\mathrm{N}-4^{\prime}-\mathrm{C}-3^{\prime}-\mathrm{C}-14^{\prime}-\mathrm{C}-15^{\prime}-\mathrm{C}-16^{\prime}-\mathrm{C}-17^{\prime}-\mathrm{O}$ unit of the lower macroline half. The observed three-bond correlations from the

[^0]Table 1. ${ }^{13} \mathrm{C}$ NMR Data (δ) for $1-6{ }^{a}$

C	$1{ }^{\text {b }}$	$2^{\text {b }}$	$3^{\text {b }}$	$4^{\text {b }}$	$5^{\text {c }}$	$6^{\text {c }}$
2	132.8	132.9	133.1	132.9	133.3	132.6
3	53.2	53.2	53.3	53.1	54.0	53.1
5	59.5	59.6	59.3	59.2	55.5	59.6
6	22.1	22.5	22.1	22.6	22.7	22.4
7	106.1	106.1	106.2	105.9	106.5	105.9
8	126.4	126.5	126.5	126.3	126.45	126.36
9	118.4	118.2	118.3	118.2	117.9	118.0
10	118.9	118.9	118.8	119.0	118.4	118.9
11	121.0	121.1	120.8	120.9	120.2^{f}	121.0
12	108.8	109.2	108.8	108.7	108.5	109.0
13	137.1	137.4	137.1	137.0	136.8	137.2
14	32.2	32.7	32.0	32.3	26.9	33.0
15	31.5	32.4	31.7	31.5	25.9	32.3
16	42.6	42.2	42.7	43.1	44.0	42.1
17	66.8	66.1	66.7	66.5	61.4	66.2
18	31.8	34.4	32.6	31.1	29.5	33.9
19	212.9	214.7	213.3	213.2	99.0	214.5
20	55.5	52.7	53.9	54.5	45.6	$53.8{ }^{j}$
21	26.0	26.3	28.8	32.0	28.8	32.49^{k}
$\mathrm{N}_{1} \mathrm{Me}$	29.1	29.1	$28.9{ }^{\text {e }}$	29.0	29.07	29.14
$\mathrm{N}_{4} \mathrm{Me}$	$41.3{ }^{\text {d }}$	41.4	41.3	41.7	41.69	41.4
$2 '$	133.5	133.7	133.9	131.3	131.2	131.5
3'	53.9	53.9	53.9	53.7	53.76	$53.8{ }^{j}$
5^{\prime}	54.6	54.7	54.4	54.7	$54.7{ }^{\text {g }}$	$54.7{ }^{\text {g }}$
6	22.5	22.77	25.2	22.0	22.5	22.8
$7{ }^{\prime}$	105.8	105.3	105.3	105.4	105.1	105.6
8^{\prime}	122.9	123.3	126.2	120.1	119.7	119.1
$9 '$	116.0	115.9	118.0	118.7	118.8	119.5
10^{\prime}	104.8	104.3	151.2	119.1	120.1	$120.2{ }^{\text {f }}$
11^{\prime}	153.6	153.9	106.4	153.6	153.9	153.8
12'	110.9	110.2	107.1	91.3	91.4	91.2
13^{\prime}	136.3	136.2	133.0	136.5	136.1	136.6
14^{\prime}	32.2	32.1	32.3	32.4	32.4	32.47^{k}
15^{\prime}	22.7	22.85	22.7	22.8	$22.9{ }^{h}$	$22.9{ }^{\text {h }}$
16^{\prime}	38.4	38.6	38.3	38.3	38.5	38.4
17^{\prime}	67.6	67.8	67.6	67.7	67.87	67.85
18'	24.9	25.1	25.0	24.9	25.0	25.1
19^{\prime}	195.2	195.6	195.5	195.4	195.5	195.8
20^{\prime}	121.0	121.2	121.0	120.8	$121 .{ }^{\text {i }}$	$121.2^{\text {i }}$
21^{\prime}	157.2	157.5	157.5	157.4	157.4	157.7
$\mathrm{N}_{1} M e^{\prime}$	32.3	32.5	29.0^{e}	28.9	28.7	29.04
$\mathrm{N}_{4} M e^{\prime}$	$41.9{ }^{\text {d }}$	41.8	41.6	41.2	41.77	41.74
10'-OMe			56.9			
11'-OMe	56.7	56.7		55.5	55.3	55.6

${ }^{a}$ Assignments are based on COSY, HSQC, and HMBC. ${ }^{b} 100 \mathrm{MHz}$, $\mathrm{CDCl}_{3} .{ }^{c} 150 \mathrm{MHz}, \mathrm{CDCl}_{3} .{ }^{d-k}$ Assignments are interchangeable.
vinylic H-21' (which is associated with the acetyl group forming the α, β-unsaturated carbonyl chromophore) to $\mathrm{C}-17^{\prime}$ and $\mathrm{C}-15^{\prime}$ in the HMBC spectrum indicated that the lower macroline half corresponds to a type-B macroline ${ }^{12}$ [a 12 'substituted alstophylline (7)], ${ }^{8,12,22}$ which was in agreement with the NMR data.

The other unit of the bisindole, after discounting the signals due to the substituted alstophylline (7) half, corresponded to that of another macroline derivative with an unsubstituted indole moiety. The oxymethylene $\mathrm{C}-17$ hydrogens were observed as two doublets of doublets at $\delta_{\mathrm{H}} 3.88$ and 3.91 ($\delta_{\mathrm{C}} 66.8$). This oxymethylene constitutes part of a primary alcohol function, as shown by acetylation ($\delta_{\mathrm{H}} 4.15$ and $4.53 ; \delta_{\mathrm{C}} 63.7$).

The 18 -methyl (acetyl) singlet was observed at $\delta_{\mathrm{H}} 1.55$ with the C-19 ketocarbonyl observed at δ_{C} 212.9. An additional methine corresponding to $\mathrm{C}-20$ was observed at $\delta_{\mathrm{C}} 55.5$ ($\delta_{\mathrm{H}} 3.26$), which was linked to $\mathrm{C}-19$ from the observed three-bond correlations from $18-\mathrm{Me}$ to $\mathrm{C}-20$. These features are suggestive of a seco-macroline (with an opened ring E) such as alstomicine (8) ${ }^{15}$ which was also in agreement with the COSY spectrum, which showed the presence of an $\mathrm{NCHCH}_{2} \mathrm{CH}\left(\mathrm{CHCH}_{2}\right)$ $\mathrm{CHCH}_{2} \mathrm{O}$ partial structure. The branching of the bisindole from this upper seco-macroline unit must be from this methine C-20. Connection from C-20 of the upper macroline unit to $\mathrm{C}-12^{\prime}$ of the lower half was mediated via a methylene bridge (C-21), as shown by the observed $\mathrm{H}-21$ to $\mathrm{C}-11^{\prime}, \mathrm{C}-13^{\prime}$, and C-19 three-bond correlations in the HMBC spectrum (Figure 1). The structure of perhentidine A (1) indicated that it is a regioisomer of the previously encountered Alstonia bisindole, perhentinine (4). ${ }^{14}$

Perhentidine B (2) was isolated as a light yellowish oil with $[\alpha]^{25}{ }_{\mathrm{D}}-38\left(c 0.52, \mathrm{CHCl}_{3}\right)$. The UV (234 and 286 nm) and IR (3392, 1707, 1653, and $1618 \mathrm{~cm}^{-1}$) spectra were similar to those of $\mathbf{1}$, suggesting the presence of similar functionalities. The ESIMS of 2 showed a pseudomolecular ion $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 705$, which also analyzed for $\mathrm{C}_{43} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{5}+\mathrm{H}$, indicating that $\mathbf{2}$ and $\mathbf{1}$ are isomers.

Inspection of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (Tables 2 and 1) of 2 indicated a general similarity with those of $\mathbf{1}$, showing the presence of an unsubstituted indole moiety ($\delta_{\mathrm{H}} 7.14-7.56$), another indole moiety substituted at C-11' and C-12' (a pair of AB doublets at $\delta_{\mathrm{H}} 6.76$ and 7.20 ; NOE: $\mathrm{H}-9^{\prime} / \mathrm{H}-6^{\prime}, \mathrm{H}-10^{\prime} /$ $11^{\prime}-\mathrm{OMe}$), a vinylic singlet at $\delta_{\mathrm{H}} 7.48$ associated with a trisubstituted double bond, an α, β-unsaturated carbonyl moiety ($\delta_{\mathrm{C}} 195.6,121.2$, and $157.9 ; \delta_{\mathrm{H}} 2.05$), a ketocarbonyl (δ_{C} 214.7), a hydroxylmethyl group ($\delta_{\mathrm{C}} 66.1 ; \delta_{\mathrm{H}} 4.09$ and 4.49; acetylation yielded an acetate derivative $\mathbf{2 a}$), and seven methyl singlets, corresponding to two $\mathrm{N} 1-\mathrm{Me}$, two $\mathrm{N} 4-\mathrm{Me}$, two acetyl methyls, and an aromatic methoxy group. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 2 are generally similar to those of 1 except for differences in the chemical shifts of C-15, C-18, C-19, and C-20 in the ${ }^{13} \mathrm{C}$ NMR spectrum and $\mathrm{H}-14 \beta, \mathrm{H}-17$, and $\mathrm{H}-20$, in the ${ }^{1} H$ NMR spectrum. The NMR data therefore indicated that 2 was also a bisindole of the macroline-macroline type incorporating the same two constituent halves as in $\mathbf{1}$.

The COSY and HSQC data of 2 disclosed the same partial fragments as in $\mathbf{1}$. In addition, the HMBC data of 2 (Figure 2) showed the same key three-bond correlations (H-21 to C-11', C-13', and C-19) as those of 1 , indicating similar branching of the bisindole from C-12' of the lower macroline half to C-20 of the upper half, the C-20 connection being mediated by the C21 methylene bridge. On the basis of the above observations, perhentidine $B(2)$ is the C-20 epimer of perhentidine A (1).

The remaining issue concerns the assignment of the relative configuration of C-20 in $\mathbf{1}$ and $\mathbf{2}$. Examination of the ${ }^{1} \mathrm{H}$ NMR data of perhentidines A (1) and B (2) showed that the signals of $\mathrm{H}-20$ in both compounds were observed as multiplets (Table 2). Furthermore the signal of one of the C-21 hydrogens in perhentidine $A(1)$ and of both the $C-21$ hydrogens in perhentidine B (2) were also observed as multiplets. In the case of the O-acetyl derivatives of both compounds (1a and 2a) however, the signals for $\mathrm{H}-20$ and $\mathrm{H}-21$ were clearly resolved. The H-20 signal in O-acetylperhentidine A (1a) was seen as a triplet of doublets at $\delta_{\mathrm{H}} 2.99$ with $J=10.7$ and 3.8 Hz (i.e., $J_{20-21 \mathrm{a}}=J_{15-20}=10.7, J_{20-21 \mathrm{~b}}=3.8 \mathrm{~Hz}$). The signal of one of the C-21 hydrogens was observed as a doublet of doublets at

Table 2. ${ }^{1} \mathrm{H}$ NMR Data (δ) for $\mathbf{1 - 6}{ }^{\boldsymbol{a}}$

H	$1^{\text {b }}$	$2^{\text {b }}$	3^{6}	$4^{\text {b }}$	5^{c}	6^{c}
3	4.14 m	3.98 m	4.14 m	$4.09 \mathrm{dd}(4,2)$	3.95 m	4.00 m
5	3.48 d (7.6)	3.63 m	3.45 m	3.46 d (7)	2.93 d (6)	3.59 m
6β	2.57 d (17)	2.58 d (17)	2.56 d (17)	2.54 m	2.13 m (a)	2.56 d (17) (a)
6α	3.29 m	3.37 dd (17, 7)	3.29 dd (17, 7)	3.32 m	2.63 dd (b) (17, 10)	$3.35 \mathrm{dd}(b)(17,7.5)$
9	7.56 d (7.5)	7.56 d (8)	7.56 d (7.5)	7.52 d (8)	7.33 (7.5)	7.51 d (7.5)
10	7.16 t (7.5)	7.14 m	7.16 t (7.5)	$7.13 \mathrm{td}(8,1)$	7.00 m	7.12 t (7.5)
11	7.26 m	7.22 m	7.24 m	$7.22 \mathrm{td}(8,1)$	7.09 m	7.21 t (7.5)
12	7.36 d (7.5)	7.32 d (8)	7.34 d (7.5)	7.32 d (8)	7.09 m	$7.30 \mathrm{~d}(7.5)$
14β	2.01 m	1.48 m	2.04 m	1.98 m	1.87 m (a)	1.44 d (12) (a)
14α	2.46 m	2.26 m	2.50 m	2.41 m	$2.86 \mathrm{td}(13,3.5)(b)$	2.35 m (b)
15	2.27 m	2.11 m	2.21 m	2.14 m	1.77 m	2.01 m
16	1.66 m	1.88 m	1.60 m	1.57 m	1.77 m	1.90 m
17a	3.88 dd (11, 2)	4.09 m	3.83 dd (11, 2)	3.95 dd (11, 3)	3.49 m	$4.12 \mathrm{dd}(12,3)$
17b	3.91 dd (11, 2)	4.49 d (12)	3.90 m	$4.01 \mathrm{dd}(11,2)$	4.52 t (11.5)	4.43 d (12)
18	1.55 s	1.40 s	1.30 s	1.72 s	1.51 s	1.68 s
20	3.26 m	3.55 m	3.42 m	3.32 m	1.91 m	3.39 td (11, 4)
21a	$2.92 \mathrm{dd}(13,10.5)$	3.05 m	2.60 t (12)	2.41 m	2.43 m	2.39 m
21b	3.26 m	3.17 m	3.23 dd (12, 4)	3.08 m	3.06 dd (14, 3.5)	3.00 m
$\mathrm{N}_{1} \mathrm{Me}$	3.69 s	3.57 s	3.69 s	3.65 s	3.47 s	3.56 s
$\mathrm{N}_{4} \mathrm{Me}$	$2.36{ }^{\text {d }} \mathrm{s}$	2.36 s	2.37 s	2.34 s	2.28 s	2.38 s
3'	3.80 m	3.72 m	3.77 m	3.79 t (3)	3.75 m	3.79 m
$5 '$	3.05 d (7)	3.01 m	2.87 d (7)	2.99 d (7)	3.00 m	3.00 m
$6^{\prime} \alpha$	2.40 m	2.34 m	2.26 d (17)	2.28 m	2.33 m (a)	2.35 m (a)
$6^{\prime} \beta$	3.23 dd (17, 7)	3.20 m	3.18 dd (17, 7)	3.08 m	3.00 m (b)	3.17 dd (16.5, 7) (b)
$9{ }^{\prime}$	7.22 d (8.6)	7.20 d (8.6)		6.90 s	6.74 s	6.90 s
10^{\prime}	6.75 d (8.6)	6.76 d (8.6)				
11^{\prime}			6.83 d (9)			
12'			7.07 d (9)	6.69 s	6.40 s	6.69 s
$14^{\prime} \alpha$	1.75 td (12, 4)	1.70 td (12.5, 3.5)	1.75 m	1.75 td (12, 3)	1.76 m (a)	1.77 m (a)
$14^{\prime} \beta$	2.01 m	1.99 m	2.04 m	2.04 m	2.01 m (b)	2.01 m (b)
15^{\prime}	2.50 m	2.51 m	2.50 m	2.54 m	2.60 m	2.60 m
16^{\prime}	1.84 m	1.82 m	1.75 m	$1.84 \mathrm{dt}(11,4)$	1.87 m	1.87 m
$17^{\prime} \beta$	4.14 m	4.12 m	4.08 dd (11, 4)	4.13 ddd (11, 4, 1)	4.19 dd (11, 3) (a)	4.14 dd (12, 3) (a)
$17^{\prime} \alpha$	4.39 t (11)	4.37 t (11)	4.32 t (11)	4.37 t (11)	4.38 m (b)	4.38 t (12) (b)
18'	2.06 s	2.05 s	2.06 s	2.05 s	2.07 s	2.09 s
21^{\prime}	7.49 s	7.48 s	7.49 s	7.51 s	7.52 s	7.53 s
$\mathrm{N}_{1} M e^{\prime}$	3.58 s	3.53 s	3.53 s	3.55 s	3.50 s	3.59 s
$\mathrm{N}_{4} M e^{\prime}$	$2.37{ }^{\text {d }} \mathrm{s}$	2.24 s	2.24 s	2.25 s	2.13 s	2.24 s
10'-OMe			3.89 s			
11'-OMe	3.83 s	3.94 s		3.87 s	3.92 s	3.65 s

${ }^{a}$ Assignments are based on COSY, HSQC, and $\mathrm{HMBC} .{ }^{b} 400 \mathrm{MHz}, \mathrm{CDCl}_{3} .{ }^{c} 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$. ${ }^{d}$ Assignments are interchangeable.

Figure 1. Selected HMBCs and NOEs of 1.
$\delta_{\mathrm{H}} 2.83\left(J_{21 \mathrm{a}-2 \mathrm{~b}}=14 \mathrm{~Hz}, J_{20-21 \mathrm{a}}=10.7 \mathrm{~Hz}\right)$. The large coupling constant of 10.7 Hz due to the coupling between $\mathrm{H}-20$ and H 21a suggested that the conformation adopted about the C-21-$\mathrm{C}-20$ bond was one that places the two vicinal hydrogens at C-21 and C-20 anti to one another. The preferred anti conformation was likely due to the presence of three bulky groups, two on C-20 and one on C-21, which resulted in steric hindrance to free rotation about the $\mathrm{C}-20-\mathrm{C}-21$ bond. The observation that $\mathrm{H}-20$ is anti to $\mathrm{H}-21 \mathrm{a}$, coupled with the observed NOE interactions between $\mathrm{H}-21 \mathrm{a}$ and $\mathrm{H}-15$; $\mathrm{H}-20$ and $\mathrm{H}-14, \mathrm{H}-21 \mathrm{~b}$; $\mathrm{H}-21 \mathrm{~b}$ and $\mathrm{H}-14$; and $18-\mathrm{Me}$ and $\mathrm{H}-17, \mathrm{H}-20$ (Figure 3), allowed the configuration at $\mathrm{C}-20$ in the O -acetyl derivative 1a, and therefore in perhentidine $\mathrm{A}(\mathbf{1})$ as well, to be assigned as S.

In the case of O-acetylperhentidine $B(\mathbf{2 a})$, the signal due to $\mathrm{H}-20$ was also seen as a triplet of doublets at $\delta_{\mathrm{H}} 3.23$ with $J=$ 11 and 5 Hz . The observed $\mathrm{H}-20-\mathrm{H}-21$ a coupling of 11 Hz indicated an anti disposition of the two hydrogens as before in

Figure 2. Selected HMBCs and NOEs of 2.

Figure 3. Selected NOEs of 1a.
the case of O-acetylperhentidine $\mathrm{A}(\mathbf{1 a})$. In this instance however, the definitive NOEs, which allowed the assignment of the configuration at $\mathrm{C}-20$, were different from those observed in 1a. Thus, in the case of O-acetylperhentidine B (2a), NOEs were observed between $\mathrm{H}-20$ and $\mathrm{H}-14, \mathrm{H}-21 \mathrm{~b}$; $\mathrm{H}-21 \mathrm{a}$ and $\mathrm{H}-15$; $\mathrm{H}-21 \mathrm{~b}$ and $\mathrm{H}-16, \mathrm{H}-17$; and $\mathrm{H}-18$ and $\mathrm{H}-14, \mathrm{H}-15, \mathrm{H}-20$ (Figure 4). These NOEs are consistent with the assignment of the C-20 configuration in $\mathbf{2 a}$ (and 2) as R.

Figure 4. Selected NOES of 2a.
Perhentidine C (3) was obtained as a colorless oil, $[\alpha]_{\mathrm{D}}-73$ ($c 0.50, \mathrm{CHCl}_{3}$). The IR ($3387,1703,1651,1615 \mathrm{~cm}^{-1}$) and UV (230 and 285 nm) data were essentially similar to those of $\mathbf{1}$ and 2. The expected molecular ion at $m / z 704\left(\mathrm{C}_{43} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{5}\right)$ was too weak to be detected in the EIMS. The highest mass fragment was observed at $m / z 686\left(\mathrm{C}_{43} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{4}\right)$, which corresponded to the loss of $\mathrm{H}_{2} \mathrm{O}$ from the parent ion. The $[\mathrm{M}+\mathrm{H}]^{+}$ion could however be detected by LSIMS at m / z 705, and HRLSIMS measurements $(\mathrm{m} / z 705.4029)$ gave the molecular formula $\mathrm{C}_{43} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{5}$. Perhentidine C (3) is therefore an isomer of perhentidines $\mathrm{A}(\mathbf{1})$ and $\mathrm{B}(2)$.

The NMR data (Tables 1 and 2) of 3 showed some similarities with those of $\mathbf{1}$ and 2 , such as the presence of an unsubstituted indole moiety ($\delta_{\mathrm{H}} 7.16-7.56$), a disubstituted
indole moiety (a pair of AB doublets at $\delta_{\mathrm{H}} 6.83$ and 7.07), a vinylic singlet at $\delta_{\mathrm{H}} 7.49$ associated with a trisubstituted double bond, an α, β-unsaturated carbonyl moiety ($\delta_{\mathrm{C}} 195.5,121.0$, and 157.5; $\delta_{\mathrm{H}} 2.06$), a ketocarbonyl ($\delta_{\mathrm{C}} 213.3$), a hydroxymethyl group ($\delta_{\mathrm{C}} 66.7$; $\delta_{\mathrm{H}} 3.83$ and 3.90 ; acetylation gave the O-acetyl derivative 3a), and seven methyl singlets, corresponding to two $\mathrm{N} 1-\mathrm{Me}$, two $\mathrm{N} 4-\mathrm{Me}$, two acetyl methyls, and an aromatic methoxy group. The observed NOE between the N1'-methyl signal $\left(\delta_{\mathrm{H}} 3.53\right)$ and the aromatic resonance at $\delta_{\mathrm{H}} 7.07$ of the disubstituted indole unit allowed assignment of the aromatic AB doublets at $\delta_{\mathrm{H}} 6.83$ and 7.07 to $\mathrm{H}-11^{\prime}$ and $\mathrm{H}-12^{\prime}$, respectively. The placement of the methoxy substituent at C-10' was confirmed by the observed NOE between $\mathrm{H}-11^{\prime}$ and $10^{\prime}-\mathrm{OMe}$, which was further supported by the observed threebond correlations from $\mathrm{H}-12^{\prime}$ and $10^{\prime}-\mathrm{OMe}$ to $\mathrm{C}-10^{\prime}$ in the HMBC spectrum (Figure 5). This indicated C-9' as the site of branching of the bisindole from this lower unit.

$$
\left(\curvearrowright=\mathrm{HMBC} ; \kappa^{-}=\mathrm{NOE}\right)
$$

Figure 5. Selected HMBCs and NOEs of 3.

Examination of the NMR data indicated that while the bisindoles 1 and 2 are constituted from a seco-macroline or alstomicine (8) (upper half) and a 12 -substituted alstophylline (7) (lower half), perhentidine C (3) differs in that while the upper unit is the same seco-macroline indole, alstomicine (8), the lower half entity is now a 9^{\prime}-substituted-10'-methoxyalstonerine (9). ${ }^{12,13,22}$ The mode of branching in 3 is therefore from C-9' of the lower 10^{\prime}-methoxyalstonerine unit to C-20 of the alstomicine unit, the connection to the upper alstomicine unit being mediated by the C-21 methylene bridge. This was supported by the observed three-bond correlations from H-21 to C-19, C-8', and C-10' in the HMBC spectrum (Figure 5) of 3.

As in the previous two bisindoles 1 and 2, the relative configuration of C-20 in $\mathbf{3}$ can be deduced from analysis of the coupling constants and the observed NOEs. In the case of 3 (unlike 1 and 2), the $\mathrm{H}-21$ resonances were well resolved in the ${ }^{1} \mathrm{H}$ NMR spectrum, whereas the resonances of $\mathrm{H}-20$ and $\mathrm{H}-21$ were multiplets in the O-acetyl derivative 3 a . As before, the signal due to one of the hydrogens on C-21 was observed as a triplet at $\delta_{\mathrm{H}} 2.60\left(J_{21 \mathrm{a}-21 \mathrm{~b}}=J_{21 \mathrm{a}-20}=12 \mathrm{~Hz}\right)$, indicating a preferred conformation about the C-20-C-21 bond that places the two vicinal hydrogens anti to one another due to steric hindrance caused by the presence of three bulky groups. This, coupled with the observed NOE interactions between H-21a and $\mathrm{H}-15, \mathrm{H}-6$ ' β; $\mathrm{H}-21 \mathrm{~b}$ and $\mathrm{H}-14 \beta$; and $18-\mathrm{Me}$ and $\mathrm{H}-16$, $\mathrm{H}-$ 17, $\mathrm{H}-20$ (Figure 6), allowed the configuration at C-20 to be assigned as S (NOE between $\mathrm{H}-21$ a and $\mathrm{H}-15$ is impossible for 20 R or $\mathrm{H}-20$ is β-oriented).

Perhentidines A (1), B (2), and C (3) are therefore regiosomers of the previously isolated Alstonia bisindole, perhentinine

Figure 6. Selected NOEs of 3.
(4). Repeated attempts to obtain crystals of perhentinine as well as perhentidines A, B, and C were singularly unsuccessful. Eventually it was found that in the case of perhentinine (4) treatment with excess MeI gave suitable crystals for X-ray diffraction analysis, which revealed formation of the dimethyl diiodide salt of the ring-E cyclized (hemiketal) product ($4 \mathbf{b}$) (Figure 7), from which the absolute configuration at C-20 of the

Figure 7. X-ray crystal structure of $\mathbf{4 b}$. Flack parameter $x=$ $-0.04(0.03)$.
precursor E-seco-compound, perhentinine, could be established as S. This was also in agreement with the results of analysis of the coupling constants $\left(J_{20-21 \mathrm{a}}=11.0, J_{20-21 \mathrm{~b}}=3.5 \mathrm{~Hz}\right)$ and NOEs (H-21a/H-15; H-21b/H-14, H-20; 18-Me/H-17, H-20) of perhentinine acetate ($\mathbf{4 a}$), carried out in a similar manner to that described for perhentidines $\mathrm{A}-\mathrm{C}(\mathbf{1}-\mathbf{3})$ (vide supra).

Since we have secured firm confirmation of the C-20 configuration of perhentinine by X-ray diffraction analysis of its cyclized or hemiketal derivative (in the form of its dimethyl diiodide salt, 4b), it would be advantageous if the X-ray structure of a corresponding 20 R bisindole alkaloid was also available to serve as a model compound for comparison. In the present series, perhentidine B (2) would constitute such a candidate. However, as mentioned previously, repeated attempts at crystallization (including treatment with MeI) proved fruitless. Another relevant bisindole candidate available from A. macrophylla is macralstonine (5), ${ }^{10,12,24}$ which has been previously investigated by Hesse and Schmid. ${ }^{23}$ It has been observed that macralstonine exists as an equilibrium mixture of acyclic (ketone, 6) and cyclized (hemiketal, 5) forms in CHCl_{3} solution. ${ }^{23}$ We have confirmed this by analysis of high-field NMR data (600 MHz) of macralstonine. Thus, in CDCl_{3} solution, the ratio of acyclic to cyclized form was $2.32: 1$, while in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, it was 1.14:1, and in THF- d_{8}, it was virtually detected as the cyclized hemiketal form (5), albeit with poor solubility in this solvent. With the help of 2-D methods, the NMR data of the two forms could be distinguished (Tables 1 and 2). ${ }^{25}$ The E-seco-
macralstonine (6) could be trapped by conversion to its O-acetyl derivative $\mathbf{6 a},{ }^{23}$ in which case the NMR data of the pure O-acetyl-E-seco-macralstonine could be determined (Tables 3 and 4).

Table 3. ${ }^{13} \mathrm{C}$ NMR Data (δ) for 1a-4a and 6a ${ }^{a}$

C	$1 \mathrm{a}^{\text {b }}$	$2 a^{\text {b }}$	$3 \mathrm{a}^{\text {c }}$	$4 a^{\text {b }}$	$6 a^{\text {b }}$
2	133.6	133.6	133.1	133.8	133.4
3	53.5	53.2	53.7	53.5	53.2
5	54.6	53.3	55.0^{e}	54.2	53.6
6	21.7	22.1	21.8	21.8	22.1
7	107.0	106.7	107.1	106.8	106.6
8	126.7	126.7	126.8	126.6	126.5
9	118.4	118.0	118.5	118.3	118.0
10	118.8	118.6	118.7	118.7	118.7
11	120.7	120.7	120.7	120.7	120.8
12	108.8	109.1	108.9	108.8	109.0
13	137.0	137.2	137.2	137.0	137.2
14	30.3	31.3	30.1	30.3	31.46
15	30.8	31.6	31.2	31.3	31.55
16	43.0	42.0	43.3	43.6	41.9
17	63.7	62.6	64.0	63.5	62.6
18	$32.2{ }^{\text {d }}$	34.1	32.9	31.7	32.7
19	212.8	214.1	213.1	213.1	213.9
20	54.8	52.4	$53.2{ }^{\text {e }}$	54.1	53.9
21	26.2	25.6	29.0	33.2	31.8
$\mathrm{N}_{1} \mathrm{Me}$	29.1	28.9	$29.1{ }^{f}$	29.2	29.1
$\mathrm{N}_{4} \mathrm{Me}$	41.9	41.9	$41.6{ }^{\text {g }}$	42.1	42.1
OCOMe	21.2	21.3	21.2	21.1	21.3
OCOMe	171.3	171.6	171.2	171.4	171.4
$2 '$	133.8	133.6	133.8	131.5	131.3
3'	53.9	53.8	54.0	53.8	53.9
$5 '$	54.6	54.6	54.4	54.7	54.7
$6{ }^{\prime}$	22.5	22.7	25.3	22.8	22.9
$7{ }^{\prime}$	105.8	105.2	105.3	105.6	105.5
8^{\prime}	122.9	123.2	126.3	119.2	120.1
$9 '$	116.1	115.8	118.0	119.4	119.4
10^{\prime}	104.7	104.5	151.2	118.7	119.0
11^{\prime}	153.5	153.8	106.5	153.7	153.9
12'	110.9	110.0	107.3	91.4	91.3
13'	136.3	136.1	133.1	136.7	136.7
14^{\prime}	$32.2{ }^{\text {d }}$	32.0	32.2	32.4	32.4
15^{\prime}	22.7	22.8	22.8	22.9	22.8
16^{\prime}	38.4	38.5	38.5	38.4	38.4
17^{\prime}	67.7	67.7	67.5	67.8	67.8
18^{\prime}	25.0	25.0	25.1	25.4	25.1
19^{\prime}	195.3	195.5	195.7	195.6	195.7
20^{\prime}	121.0	121.1	120.9	121.1	121.1
21^{\prime}	157.2	157.4	157.8	157.7	157.6
$\mathrm{N}_{1} M e^{\prime}$	$32.2{ }^{\text {d }}$	32.4	$29.2{ }^{f}$	29.0	29.0
$\mathrm{N}_{4} M e^{\prime}$	42.1	41.7	$42.2{ }^{\text {g }}$	41.9	41.7
10'-OMe			56.9		
11'-OMe	56.6	56.6		55.6	55.5

${ }^{a}$ Assignments are based on COSY, HSQC, and HMBC. ${ }^{b} 150 \mathrm{MHz}$, $\mathrm{CDCl}_{3} .{ }^{c} 100 \mathrm{MHz}, \mathrm{CDCl}_{3} .{ }^{d-g}$ Assignments are interchangeable.

The relative configuration at C - 20 in the O-methyl congener of macralstonine isolated from the Thai A. macrophylla was established as R on the basis of its NOESY spectrum. ${ }^{10,24}$ In the case of macralstonine, however, NOE was not feasible due to the observation of $\mathrm{H}-20$ and $\mathrm{H}-21$ as multiplets. In the case of the O-acetyl-E-seco-macralstonine derivative $\mathbf{6 a}, \mathrm{H}-20$ was clearly seen as a triplet of doublets $\left(J_{20-21 \mathrm{a}}=11.0, J_{20-21 \mathrm{~b}}=4.0 \mathrm{~Hz}\right)$,

Table 4. ${ }^{1} \mathrm{H}$ NMR Data (δ) for $1 \mathrm{a}-4 \mathrm{a}$ and $6 \mathrm{a}^{a}$

H	$1 a^{\text {b }}$	$2 a^{\text {b }}$	$3 a^{c}$	$4 a^{\text {b }}$	$6 a^{\text {b }}$
3	4.03 m	3.88 m	4.07 m	4.00 m	3.90 m
5	3.25 m	3.44 m	3.25 m	3.26 m	3.43 d (6)
6β	2.50 m	2.52 m	2.48 m	2.44 d (17)	$\begin{aligned} & 2.49 \mathrm{~d} \\ & (16.5) \end{aligned}$
6α	3.25 m	$\begin{aligned} & 3.35 \mathrm{dd} \\ & (17,8) \end{aligned}$	3.25 m	$\begin{gathered} 3.14 \mathrm{dd} \\ (17,7) \end{gathered}$	$\begin{aligned} & 3.33 \mathrm{dd} \\ & (16.5,7) \end{aligned}$
9	7.57 d (8)	$\begin{gathered} 7.58 \mathrm{~d} \\ (7.5) \end{gathered}$	$\underset{(7.5)}{7.58 \mathrm{br} \mathrm{~d}}$	$\underset{(7.5)}{7.54 \mathrm{br} \mathrm{~d}}$	$\begin{array}{r} 7.53 \mathrm{~d} \\ (7.5) \end{array}$
10	7.15 t (8)	7.14 t (7.5)	$\begin{aligned} & 7.16 \mathrm{td} \\ & (7.5,1) \end{aligned}$	$\begin{aligned} & 7.13 \mathrm{td} \\ & (7.5,1) \end{aligned}$	$\begin{aligned} & 7.12 \mathrm{td} \\ & (7.5,1) \end{aligned}$
11	7.23 t (8)	7.22 t (7.5)	$\begin{aligned} & 7.23 \mathrm{td} \\ & (7.5,1) \end{aligned}$	$\begin{aligned} & 7.22 \mathrm{td} \\ & (7.5,1) \end{aligned}$	$\begin{aligned} & 7.19 \mathrm{td} \\ & (7.5,1) \end{aligned}$
12	7.34 d (8)	$\begin{gathered} 7.31 \mathrm{~d} \\ (7.5) \end{gathered}$	$\underset{(7.5)}{7.33 \mathrm{br} \mathrm{~d}}$	$\underset{(7.5)}{7.32 \mathrm{br} \mathrm{~d}}$	$\begin{gathered} 7.29 \mathrm{~d} \\ (7.5) \end{gathered}$
14β	1.94 m	1.32 m	1.94 m	1.86 m	1.28 d (12)
14α	1.94 m	1.81 m	1.94 m	1.86 m	1.89 m
15	2.25 m	2.14 m	2.21 m	2.14 m	2.03 m
16	1.94 m	2.21 m	1.87 m	1.88 m	2.23 m
17a	$\begin{aligned} & 4.15 \mathrm{dd} \\ & (11,3.5) \end{aligned}$	4.63 m	$\begin{aligned} & 4.22 \mathrm{dd} \\ & (11,4) \end{aligned}$	$\begin{aligned} & 4.28 \mathrm{dd} \\ & (11,3.5) \end{aligned}$	4.59 m
17b	$\begin{aligned} & 4.53 \mathrm{dd} \\ & (11,9) \end{aligned}$	4.63 m	$\begin{aligned} & 4.49 \mathrm{dd} \\ & (11,9) \end{aligned}$	4.58 t (11)	4.59 m
18	1.59 s	1.30 s	1.34 s	1.71 s	1.59 s
20	$\begin{aligned} & 2.99 \mathrm{td} \\ & (10.7,3.8) \end{aligned}$	$\begin{aligned} & 3.23 \mathrm{td} \\ & (11,5) \end{aligned}$	3.15 m	$\begin{aligned} & 3.08 \mathrm{td} \\ & (11,3.5) \end{aligned}$	$\begin{aligned} & 3.06 \mathrm{td} \\ & (11,4) \end{aligned}$
21a	$\begin{aligned} & 2.83 \mathrm{dd}(14, \\ & 10.7) \end{aligned}$	3.04 m	2.48 m	2.31 m	2.37 m
21b	$\begin{aligned} & 3.17 \mathrm{dd} \\ & (14,3.8) \end{aligned}$	$\begin{aligned} & 3.32 \mathrm{dd} \\ & (14,5) \end{aligned}$	3.15 m	$\begin{aligned} & 2.97 \mathrm{dd} \\ & (13.5,3.5) \end{aligned}$	3.15 m
$\mathrm{N}_{1} \mathrm{Me}$	3.66 s	3.55 s	3.67 s	3.64 s	3.55 s
$\mathrm{N}_{4} \mathrm{Me}$	2.35 s	2.28 s	2.37 s	2.28 s	2.31 s
OCOMe	2.03 s	2.16 s	1.99 s	2.06 s	2.15 s
3'	3.79 m	3.72 m	3.81 m	3.80 br s	3.81 m
5	3.05 m	3.01 m	2.81 d (7)	3.02 d (7)	3.03 m
$6^{\prime} \alpha$	2.40 d (16)	2.35 d (16)	$\begin{gathered} 2.26 \mathrm{~d} \\ (16) \end{gathered}$	2.54 m	2.39 m
$6^{\prime} \beta$	3.23 m	$\begin{gathered} 3.18 \mathrm{dd} \\ (16,7) \end{gathered}$	3.11 m	$\begin{aligned} & 3.14 \mathrm{dd} \\ & (16.5,7) \end{aligned}$	3.17 m
$9{ }^{\prime}$	7.23 d (8.5)	$\begin{gathered} 7.19 \mathrm{~d} \\ (8.5) \end{gathered}$		6.87 s	6.90 s
10^{\prime}	6.76 d (8.5)	$\begin{array}{r} 6.77 \mathrm{~d} \\ (8.5) \end{array}$			
11^{\prime}			$\begin{array}{r} 6.83 \mathrm{~d} \\ (8.7) \end{array}$		
12^{\prime}			$\begin{array}{r} 7.07 \mathrm{~d} \\ (8.7) \end{array}$	6.69 s	6.69 s
$14^{\prime} \alpha$	1.74 m	$\begin{aligned} & 1.71 \mathrm{td} \\ & (12,3.5) \end{aligned}$	1.75 m	1.75 m	1.78 m
$14^{\prime} \beta$	1.98 m	1.99 m	2.08 m	2.06 m	2.07 m
15^{\prime}	2.48 m	2.50 m	2.48 m	$\begin{aligned} & 2.53 \mathrm{dt} \\ & (11.5,6) \end{aligned}$	2.59 m
16^{\prime}	1.84 m	1.82 m	1.69 m	1.88 m	1.89 m
$17^{\prime} \beta$	$\begin{aligned} & 4.13 \mathrm{dd} \\ & (11.5,3.5) \end{aligned}$	$\begin{aligned} & 4.12 \mathrm{dd} \\ & (11,3) \end{aligned}$	4.09 m	$\begin{aligned} & 4.14 \mathrm{dd} \\ & (11,2) \end{aligned}$	$\begin{aligned} & 4.14 \mathrm{~d} \\ & (10.5) \end{aligned}$
$17^{\prime} \alpha$	4.39 t (11.5)	4.37 t (11)	$\begin{array}{r} 4.31 \mathrm{t} \\ (11) \end{array}$	4.41 t (11)	$\begin{aligned} & 4.39 \mathrm{t} \\ & (10.5) \end{aligned}$
18'	2.06 s	2.06 s	2.06 s	2.07 s	2.09 s
21^{\prime}	7.49 s	7.50 s	7.50 s	7.51 s	7.53 s
$\mathrm{N}_{1} \mathrm{Me}^{\prime}$	3.48 s	3.52 s	3.53 s	3.57 s	3.57 s
$\mathrm{N}_{4} \mathrm{Me}^{\prime}$	2.27 s	2.24 s	2.31 s	2.30 s	2.26 s
10'-OMe			3.88 s		
11'-OMe	3.85	3.92 s		3.88 s	3.91 s

${ }^{a}$ Assignments are based on COSY, HSQC, and HMBC. ${ }^{b} 600 \mathrm{MHz}$, $\mathrm{CDCl}_{3} .{ }^{c} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$.
and this, coupled with the observed NOEs (H-21a/H-15, H-9'; $\left.\mathrm{H}-21 \mathrm{~b} / \mathrm{H}-16, \mathrm{H}-17, \mathrm{H}-9^{\prime}\right)$, allowed assignment of the C-20
configuration as R. In the event, macralstonine crystallized wholly as the cyclized hemiketal form (5) from a $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ MeOH solution. X-ray analysis was therefore carried out and confirmed the 20R absolute configuration (Figure 8).

Figure 8. X-ray crystal structure of 5. Flack parameter $x=-0.1(0.4)$; Hooft parameter $y=-0.30(0.14)$.

Since we now have two bisindole alkaloids, viz., perhentinine (4) (and its cyclized hemiketal derivative in the form of its dimethyl diiodide salt, 4b) and macralstonine (5) (and its acyclic form as its O-acetyl derivative, 6a), which possesses opposite C-20 configuration and for which we have obtained X-ray crystal structure data, these two alkaloids can therefore serve as model compounds for comparison of the perhentidines.

In the NMR spectra of the parent bisindoles (1-4, 6), the signals of the $\mathrm{C}-17$ oxymethylene hydrogens are well separated in the case of the 20R bisindoles, 2 and $6\left(\Delta \delta=\delta_{17 \mathrm{~b}}-\delta_{17 \mathrm{a}} \approx\right.$ $0.3-0.4$), whereas these signals are close in the $20 S$ compounds, 1, 3, and $4\left(\Delta \delta=\delta_{17 \mathrm{~b}}-\delta_{17 \mathrm{a}} \approx 0.02-0.07\right)$. In the case of the O-acetyl derivatives $(\mathbf{1 a - 4 a}, \mathbf{6 a})$ however, this trend is reversed, and a clear distinction could be observed between the $20 S$ and $20 R$ series. Thus the signals due to the C -17 oxymethylene hydrogens in the O-acetyl derivatives of the $20 S$ series ($\mathbf{1 a}, \mathbf{3 a}, \mathbf{4 a}$) were observed as clearly separated AX doublets of doublets ($\Delta \delta=\delta_{17 \mathrm{~b}}-\delta_{17 \mathrm{a}} \approx 0.3-0.4$), while those in the O-acetyl derivatives of the 20 R series ($\mathbf{2 a}, \mathbf{6 a}$) were invariably observed as overlapped multiplets ($\Delta \delta=\delta_{17 \mathrm{~b}}-\delta_{17 \mathrm{a}}$ ≈ 0) (Figure 9). This not only provided additional strong support for the assignment of the C-20 configurations in compounds $1-6$ based on analysis of the NMR coupling constant and NOE data (vide infra) but in addition could serve as a potentially general method for the determination of the configuration at $\mathrm{C}-20$ in related bisindoles with similar constitution and branching of the monomeric units.

In conclusion we have established complete and firm structure assignment of the new macroline-macroline bisindoles perhentidines A (1), B (2), and C (3), including determination of the configuration at C-20. We have also obtained X-ray confirmation of the structures (absolute configuration) of the previously isolated bisindoles, perhentinine (4) (via its dimethyl diiodide salt 4b) and macralstonine (5), which has also facilitated assignment of the structures of perhentidines $\mathrm{A}-\mathrm{C}(1-3)$.

Figure 9. Partial ${ }^{1} \mathrm{H}$ NMR spectrum $(400 \mathrm{MHz})$ of acetates $\mathbf{1 a} \mathbf{- 4 a}$ and $\mathbf{6 a}$.

EXPERIMENTAL SECTION

General Experimental Procedures. Melting points were determined on a Mel-Temp melting point apparatus and are uncorrected. Optical rotations were determined on a JASCO P-1020 digital polarimeter. IR spectra were recorded on a Perkin-Elmer Spectrum 400 spectrophotometer. UV spectra were obtained on a Shimadzu UV3101 PC spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} using TMS as internal standard on a JEOL JNM-LA 400, JNM-ECA 400, or Bruker Avance III 400 spectrometer, at 400 and 100 MHz , respectively, or on a Bruker Avance III 600 spectrometer at 600 and 150 MHz , respectively. ESIMS and HRESIMS were obtained on an Agilent 6530 Q-TOF mass spectrometer. EIMS and HRLSIMS were obtained at Organic Mass Spectrometry, Central Science Laboratory, University of Tasmania, Tasmania, Australia. X-ray diffraction analysis was carried out on a Bruker SMART APEX II CCD area detector system equipped with a graphite monochromator and using Mo $\mathrm{K} \alpha$ radiation ($\lambda=0.71073 \AA$) or on an Agilent Technologies SuperNova Dual CCD area detector system equipped with mirror monochromator and using $\mathrm{Cu} \mathrm{K} \alpha$ radiation $(\lambda=1.54184 \AA)$, at 100 K . All reactions were carried out under N_{2} in oven-dried glassware. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and pyridine were distilled from CaH_{2} under $\mathrm{N}_{2} . \mathrm{Ac}_{2} \mathrm{O}$ and $\mathrm{CH}_{3} \mathrm{I}$ were distilled under N_{2} prior to use.

Plant Material. A. macrophylla was collected in Perak, Malaysia, while A. angustifolia was collected in Johor, Malaysia. Identification of both plants was confirmed by Dr. Richard C. K. Chung, Forest Research Institute, Malaysia. Herbarium voucher specimens
(A. macrophylla, K671; A. angustifolia, K665) were deposited at the Herbarium, University of Malaya.
Extraction and Isolation. The bark material was extracted with EtOH , and the concentrated EtOH extract was then partitioned with dilute tartaric acid. The alkaloids were isolated by initial column chromatography on silica gel using CHCl_{3} with increasing proportions of MeOH , followed by rechromatography of the appropriate partially resolved fractions using centrifugal preparative TLC. For the bark extract of A. angustifolia, solvent systems used for centrifugal preparative TLC were $\mathrm{CHCl}_{3} /$ hexanes ($2: 1 ; \mathrm{NH}_{3}$-saturated) and $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}$ (30:1; NH_{3}-saturated). The yields ($\mathrm{g} \mathrm{kg}^{-1}$) of the alkaloids from the bark extract of A. angustifolia were as follows: 1 (0.0009), 3 (0.0011), and 4 (0.0050). For the bark extract of A. macrophylla, the solvent systems used for centrifugal preparative TLC were $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}$ ($30: 1 ; \mathrm{NH}_{3}$-saturated), $\mathrm{EtOAc} / \mathrm{MeOH}$ ($100: 1$; NH_{3}-saturated), and $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ ($100: 1 ; \mathrm{NH}_{3}$-saturated). The yields $\left(\mathrm{g} \mathrm{kg}^{-1}\right)$ of the alkaloids from the bark extract of A. macrophylla were as follows: $\mathbf{1}$ (0.0141), $\mathbf{2}$ (0.0156), $\mathbf{4}$ (0.0459), and $\mathbf{5}$ (0.0335).

Perhentidine A (1): light yellowish oil; $[\alpha]^{25}{ }_{\mathrm{D}}-77\left(c 0.4, \mathrm{CHCl}_{3}\right)$; $\mathrm{UV}(\mathrm{EtOH}) \lambda_{\max }(\log \varepsilon) 231$ (4.35), 286 (3.69) nm; IR (dry film) $\nu_{\text {max }}$ 3400, 1702, 1648, $1617 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data, see Tables 2 and 1 , respectively; ESIMS $m / z 705[\mathrm{MH}]^{+}$; HRESIMS m / z $705.4010[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{43} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{5}+\mathrm{H}, 705.4013$).

Perhentidine B (2): light yellowish oil; $[\alpha]_{\mathrm{D}}^{25}-38$ (c 0.52 , CHCl_{3}); UV (EtOH) $\lambda_{\text {max }}(\log \varepsilon) 234$ (4.49), 286 (3.81) nm; IR (dry film) $\nu_{\max } 3392,1707,1653,1618 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data,

Chart 1

$3 R=H, 20 S$
$3 a R=A c, 20 S$

$7 R=O M e$, alstophylline
$9 \mathrm{R}=\mathrm{H}$, alstonerine

$6 \mathrm{a} R=A c, 20 R$
see Tables 2 and 1 , respectively; ESIMS $m / z 705[\mathrm{M}+\mathrm{H}]^{+}$; HRESIMS $m / z 705.3993$ (calcd for $\mathrm{C}_{43} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{5}+\mathrm{H}, 705.4013$).

Perhentidine C (3): light yellowish oil; $[\alpha]^{25}{ }_{\mathrm{D}}-73\left(c 0.5, \mathrm{CHCl}_{3}\right)$; $\mathrm{UV}(\mathrm{EtOH}) \lambda_{\text {max }}(\log \varepsilon) 230(4.53), 285$ (3.93) nm; IR (dry film) $\nu_{\text {max }}$ 3387, 1703, 1651, $1615 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data, see Tables 2 and 1, respectively; EIMS $m / z 686\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}(100), 616$ (6), 547 (5), 486 (42), 379 (27), 343 (12), 307 (15), 277 (5), 251 (19), 197 (99), 170 (21), 70 (8); HRLSIMS $m / z 705.4029[\mathrm{M}+\mathrm{H}]^{+}$ (calcd for $\mathrm{C}_{43} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{5}+\mathrm{H}, 705.4013$).

Macralstonine (5): colorless rectangular rod crystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$; mp $260-263{ }^{\circ} \mathrm{C}$ (lit. ${ }^{23} \mathrm{mp} 279-282{ }^{\circ} \mathrm{C}$); $[\alpha]^{25}{ }_{\mathrm{D}}$ $+22\left(c \quad 0.5, \mathrm{CHCl}_{3}\right)\left\{\mathrm{lit.}^{23}[\alpha]_{\mathrm{D}}^{25}+22\left(c \quad 2.0, \mathrm{CHCl}_{3}\right)\right\} ;{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data, see Tables 2 and 1, respectively. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and THF- d_{8} are provided in the Supporting Information.

General Procedure for the Acetylation of Alkaloids 1-6. To a solution of the appropriate alkaloid (1.0 mmol), pyridine (3 equiv), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{Ac}_{2} \mathrm{O}$ (1.5 equiv), and the mixture was stirred at rt. The progress of the reaction was monitored with TLC and stopped at ca. 95% completion by addition of $5 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo, and the product was purified by centrifugal preparative TLC $\left(\mathrm{SiO}_{2}, 100: 5 \mathrm{CHCl}_{3} / \mathrm{MeOH}, \mathrm{NH}_{3}\right.$-saturated) to give the corresponding O-acetyl derivatives.

O-Acetylperhentidine A (1a). Reaction of $\mathbf{1}(18.3 \mathrm{mg}, 0.026 \mathrm{mmol})$ with $\mathrm{Ac}_{2} \mathrm{O}(3.7 \mu \mathrm{~L}, 0.039 \mathrm{mmol})$ in pyridine $(6.3 \mu \mathrm{~L}, 0.079 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ gave 1a $(9.1 \mathrm{mg}, 47 \%)$: light yellowish oil; $[\alpha]_{\mathrm{D}}^{25}-111\left(c 0.45, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{EtOH}) \lambda_{\max }(\log \varepsilon) 230$ (4.99), 285 (4.30) nm; IR (dry film) $\nu_{\text {max }} 1732,1703,1652,1620 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data, see Tables 4 and 3, respectively; ESIMS $m / z 747[\mathrm{M}+\mathrm{H}]^{+}$; HRESIMS $m / z 747.4122[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{45} \mathrm{H}_{54} \mathrm{~N}_{4} \mathrm{O}_{6}+\mathrm{H}, 747.4119$).

O-Acetylperhentidine B (2a). Reaction of $2(18.8 \mathrm{mg}, 0.027 \mathrm{mmol})$ with $\mathrm{Ac}_{2} \mathrm{O}(3.9 \mu \mathrm{~L}, 0.04 \mathrm{mmol})$ in pyridine $(6.4 \mu \mathrm{~L}, 0.081)$ and
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ gave 2a $(8.5 \mathrm{mg}, 43 \%)$: light yellowish oil; $[\alpha]^{25}{ }_{\mathrm{D}}-42$ (c $\left.0.43, \mathrm{CHCl}_{3}\right)$; UV (EtOH) $\lambda_{\text {max }}(\log \varepsilon) 230(5.01), 288$ (4.32) nm; IR (dry film) $\nu_{\max } 1734,1709,1654,1619 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data, see Tables 4 and 3, respectively; ESIMS $m / z 747[\mathrm{M}+$ $\mathrm{H}]^{+}$; HRESIMS $m / z 747.4109[\mathrm{M}+\mathrm{H}]^{+}\left(\right.$calcd for $\mathrm{C}_{45} \mathrm{H}_{54} \mathrm{~N}_{4} \mathrm{O}_{6}+\mathrm{H}$, 747.4119).

O-Acetylperhentidine C (3a). Reaction of $3(2.8 \mathrm{mg}, 0.004 \mathrm{mmol})$ with $\mathrm{Ac}_{2} \mathrm{O}(0.6 \mu \mathrm{~L}, 0.006 \mathrm{mmol})$ in pyridine $(1 \mu \mathrm{~L}, 0.012)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ gave $3 \mathrm{a}(2.2 \mathrm{mg}, 74 \%)$: colorless oil; $[\alpha]_{\mathrm{D}}-105$ (c 0.11, CHCl_{3}); UV (EtOH) $\lambda_{\text {max }}(\log \varepsilon) 230(4.70), 285(4.07) \mathrm{nm}$; IR (dry film) $\nu_{\max } 1737,1706,1650,1618 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data, see Tables 4 and 3, respectively; ESIMS $m / z 747$ $[\mathrm{M}+\mathrm{H}]^{+}$; HRESIMS $m / z 747.4118[\mathrm{M}+\mathrm{H}]^{+}\left(\right.$calcd for $\mathrm{C}_{45} \mathrm{H}_{54} \mathrm{~N}_{4} \mathrm{O}_{6}$ $+\mathrm{H}, 747.4119)$.

O-Acetylperhentinine (4a). Reaction of $4(15.1 \mathrm{mg}, 0.021 \mathrm{mmol})$ with $\mathrm{Ac}_{2} \mathrm{O}(3 \mu \mathrm{~L}, 0.032 \mathrm{mmol})$ in pyridine $(5 \mu \mathrm{~L}, 0.063 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ gave 4a $(8.2 \mathrm{mg}, 52 \%)$: light yellowish oil; $[\alpha]^{25}{ }_{\mathrm{D}}$ -103 (c 0.35, CHCl_{3}); UV (EtOH) $\lambda_{\max }(\log \varepsilon) 230(5.15), 295$ (4.41) nm; IR (dry film) $\nu_{\text {max }} 1736,1706,1651,1618 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data, see Tables 4 and 3, respectively; ESIMS m/z 747 $[\mathrm{M}+\mathrm{H}]^{+}$; HRESIMS $m / z 747.4123[\mathrm{M}+\mathrm{H}]^{+}\left(\right.$calcd for $\mathrm{C}_{45} \mathrm{H}_{54} \mathrm{~N}_{4} \mathrm{O}_{6}+$ H, 747.4119).

O-Acetyl-E-seco-macralstonine (6a). Reaction of $6(16.8 \mathrm{mg}$, $0.024 \mathrm{mmol})$ with $\mathrm{Ac}_{2} \mathrm{O}(3.4 \mu \mathrm{~L}, 0.036 \mathrm{mmol})$ in pyridine $(5.8 \mu \mathrm{~L}$, $0.071 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ gave $\mathbf{6 a}(11 \mathrm{mg}, 62 \%)$: light yellowish oil; $[\alpha]_{\mathrm{D}}^{25}+34\left(c\right.$ 1.1, $\left.\mathrm{CHCl}_{3}\right)$; UV $(\mathrm{EtOH}) \lambda_{\text {max }}(\log \varepsilon)$ 230 (5.00), 297 (4.21) nm; IR (dry film) $\nu_{\max }$ 1732, 1715, 1651, $1614 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data, see Tables 4 and 3, respectively; ESIMS $m / z 747[\mathrm{M}+\mathrm{H}]^{+}$; HRESIMS $m / z 747.4119[\mathrm{M}+\mathrm{H}]^{+}$ (calcd for $\mathrm{C}_{45} \mathrm{H}_{54} \mathrm{~N}_{4} \mathrm{O}_{6}+\mathrm{H}, 747.4119$).

Conversion of Perhentinine (4) to Its Dimethyl Diiodide Salt 4b. Iodomethane ($0.5 \mathrm{~mL}, 8 \mathrm{mmol}$) was added to perhentinine (4) $(16 \mathrm{mg}, 0.02 \mathrm{mmol})$, and the mixture allowed to stand for 24 h at rt . Excess iodomethane was then removed under reduced pressure to
furnish a yellowish residue, which on recrystallization from hot MeOH gave the corresponding dimethyl diiodide salt $\mathbf{4 b}(14 \mathrm{mg}, 62 \%)$: light yellowish block crystals; mp $228-230{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}-55(c 0.05, \mathrm{MeOH})$; $\mathrm{UV}(\mathrm{EtOH}) \lambda_{\max }(\log \varepsilon) 221$ (5.83), 295 (4.97) nm; ESIMS m/z $367[\mathrm{M}]^{2+}$; HRESIMS $m / z 367.2207[\mathrm{M}]^{2+}$ (calcd for $\mathrm{C}_{45} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{5}$, 734.4396).

X-ray Crystallographic Analysis of 4b and 5. Crystal data of 4b were collected on a Bruker SMART APEX II CCD, while the crystal data of 5 were collected on an Agilent Technologies SuperNova Dual CCD diffractometer. The structures were solved by direct methods (SHELXS-97) and refined with full-matrix least-squares on F^{2} (SHELXL-97). All non-hydrogen atoms were refined anisotropically, and all hydrogen atoms were placed in idealized positions and refined as riding atoms with the relative isotropic parameters. The absolute structures were determined by refinement of the Flack parameter ${ }^{26}$ and computation of the Hooft parameter. ${ }^{27}$ Crystallographic data for 4 c and 5 have been deposited with the Cambridge Crystallographic Data Centre. Copies of the data can be obtained, free of charge, on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 (0)1223-336033, or e-mail: deposit@ccdc.cam.ac.uk).

Crystallographic data of $4 b: C_{45} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{5}{ }^{2+} 2 \mathrm{I}^{-}, M_{\mathrm{r}}=988.77$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}, a=14.5059(2) \AA, b=14.8002(2) \AA$, $c=22.4594(3) \AA, V=4821.81(11) \AA^{3}, T=100 \mathrm{~K}, Z=4, D_{\text {calcd }}=1.307$ $\mathrm{g} \mathrm{cm}^{-3}$, crystal size $0.16 \times 0.19 \times 0.21 \mathrm{~mm}^{3}, F(000)=1920$. The final R_{1} value is $0.0634\left(w R_{2}=0.1921\right)$ for 8480 reflections [$\left.I>2 \sigma(I)\right]$. The absolute configuration of $\mathbf{4 b}$ was determined on the basis of the Flack parameter $[x=0.04(0.03)]$ and corroborated by the Hooft parameter $[y=0.022(0.07)]$. CCDC number: 865674

Crystallographic data of 5: $\mathrm{C}_{43} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{5}, M_{\mathrm{r}}=704.89$, monoclinic, space group $C_{2}, a=11.73280(10) \AA, b=13.07670(10) \AA, c=$ $19.2454(2) \AA, \alpha=\gamma=90^{\circ}, \beta=108.475^{\circ}(3), V=3632.9(7) \AA^{3}, T=$ $100 \mathrm{~K}, Z=4, D_{\text {calcd }}=1.289 \mathrm{~g} \mathrm{~cm}^{-3}$, crystal size $0.02 \times 0.10 \times$ $0.20 \mathrm{~mm}^{3}, F(000)=1512$. The final R_{1} value is $0.0720\left(w R_{2}=0.1869\right)$ for 6280 reflections $[I>2 \sigma(I)]$. The absolute configuration of compound 5 was determined on the basis of the Flack parameter $[x=-0.1(0.4)]$ in conjunction with the Hooft parameter $[y=-0.30(0.14)]$ obtained from a statistical analysis of the Bijvoet pairs. CCDC number: 865675

ASSOCIATED CONTENT

© Supporting Information

This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Tel: 603-79674266. Fax: 603-79674193. E-mail: tskam@um. edu.my.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the University of Malaya and MOHE Malaysia (HIR Grant) for financial support and Professor E. R. T. Tiekink for X-ray diffraction data of $\mathbf{5}$ obtained on the Agilent Dual CCD diffractometer.

- REFERENCES

(1) Sidiyasa, K. Taxonomy, Phylogeny, and Wood Anatomy of Alstonia (Apocynaceae); Rijksherbarium/Hortus Botanicus: The Netherlands, 1998; Blumea Supplement 11, pp 1-230.
(2) Markgraf, F. Blumea 1974, 22, 20-29.
(3) Whitmore, T. C. In Tree Flora of Malaysia; Longman: London, 1972; Vol. 2, pp 7-12.
(4) Cordell, G. A.; Saxton, J. E. In The Alkaloids; Manske, R. H. F.; Rodrigo, R. G. A., Ed.; Academic Press: New York, 1981; Vol. 20, pp 1-295.
(5) Kam, T. S. In Alkaloids: Chemical and Biological Perspective; Pelletier, S. W., Ed.; Pergamon: Amsterdam, 1999; Vol. 14, pp 285435.
(6) Kam, T. S.; Choo, Y. M. In The Alkaloids; Cordel, G. A., Ed.; Academic Press: Amsterdam, 2006; Vol. 63, pp 181-337.
(7) Abe, F.; Yamauchi, T.; Padolina, W. G. Phytochemistry 1994, 35, 253-257.
(8) Abe, F.; Yamauchi, T.; Santisuk, T. Phytochemistry 1994, 35, 249-252.
(9) Keawpradub, N.; Houghton, P. J. Phytochemistry 1997, 46, 757762.
(10) Keawpradub, N.; Houghton, P. J.; Eno-Amooquaye, E.; Burke, P. J. Planta Med. 1997, 63, 97-101.
(11) Carroll, A. R.; Hyde, E.; Smith, J.; Quinn, R. J.; Guymer, G.; Forster, P. I. J. Org. Chem. 2005, 70, 1096-1099.
(12) Ghedira, K.; Zeches-Hanrot, M.; Richard, B.; Massiot, G.; Le Men-Olivier, L.; Sevenet, T.; Goh, S. H. Phytochemistry 1988, 27, 3955-3962.
(13) Kam, T. S.; Iek, I. H.; Choo, Y. M. Phytochemistry 1999, 51, 839-844.
(14) Kam, T. S.; Choo, Y. M.; Komiyama, K. Tetrahedron 2004, 60, 3957-3966.
(15) Kam, T. S.; Choo, Y. M. J. Nat. Prod. 2004, 67, 547-552.
(16) Kam, T. S.; Tan, S. J.; Ng, S. W.; Komiyama, K. Org. Lett. 2008, 10, 3749-3752.
(17) Tan, S. J.; Choo, Y. M.; Thomas, N. F.; Robinson, W. T.; Komiyama, K.; Kam, T. S. Tetrahedron 2010, 66, 7799-7806.
(18) Tan, S. J.; Robinson, W. T.; Komiyama, K.; Kam, T. S. Tetrahedron 2011, 67, 3830-3838.
(19) Tan, S. J.; Low, Y. Y.; Choo, Y. M.; Abdullah, Z.; Etoh, T.; Hayashi, M.; Komiyama, K.; Kam, T. S. J. Nat. Prod. 2010, 73, 18911897.
(20) Ku, W. F.; Tan, S. J.; Low, Y. Y.; Komiyama, K.; Kam, T. S. Phytochemistry 2011, 72, 2212-2218.
(21) Lim, S. H.; Tan, S. J.; Low, Y. Y.; Kam, T. S. J. Nat. Prod. 2011, 74, 2556-2562.
(22) Ratnayake, C. K.; Arambewela, L. S. R.; De Silva, K. T. D.; Atta-urRahman; Alvi, K. A. Phytochemistry 1987, 26, 868-870.
(23) Kishi, T.; Hesse, M.; Vetter, W.; Gemenden, C. W.; Taylor, W. I.; Schmid, H. Helv. Chim. Acta 1966, 49, 946-964.
(24) Changwichit, K.; Khorana, N.; Suwanborirux, K.; Waranuch, N.; Limpeanchob, N.; Wisuitiprot, W.; Suphrom, N.; Ingkaninan, K. Fitoterapia 2011, 82, 798-804.
(25) Since only partial low-field ${ }^{1} \mathrm{H}$ NMR data of macralstonine (5) were previously available (ref 23) and the high-field NMR data (refs $10,12,24$) require revision for some of the original assignments, we include the full ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR data for 5 in Tables 1 and 2 .
(26) (a) Flack, H. D. Acta Crystallogr. A 1983, 39, 876-881. (b) Flack, H. D.; Bernardinelli, G. J. Appl. Crystallogr. 2000, 33, 11431148.
(27) (a) Hooft, R. W. W.; Straver, L. H.; Spek, A. L. J. Appl. Crystallogr. 2008, 41, 96-103. (b) Hooft, R. W. W.; Straver, L. H.; Spek, A. L. J. Appl. Crystallogr. 2010, 43, 665-668.

[^0]: Received: February 14, 2012
 Published: May 4, 2012

